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Since Bodewadt's (1940) seminal work on the boundary layer flow produced by a 
fluid in solid-body rotation over a stationary disk of infinite radius there has been 
much interest in determining the stability of such flows. To date, it appears that 
there is no theoretical study of the stability of Bodewadt's self-similar solution to 
perturbations that are not self-similar. Experimental studies have been compromised 
due to the difficulty in establishing these steady flows in the laboratory. Savag (1983, 
1987) has studied the endwall boundary layers of flow in a circular cylinder following 
impulsive spin-down. During the first few radians of rotation, the endwall boundary 
layers have a structure very similar to Bodewadt layers. For certain conditions, Savag 
has observed a series of axisymmetric waves travelling radially inwards in the endwall 
boundary layers. The conjecture is that these waves represent a mode of instability 
of the Bodewadt layer. Within a few radians of rotation however, the centrifugal 
instability of the sidewall layer dominates the spin-down process and the endwall 
waves are difficult to examine further. 

Here, the impulsive spin-down problem is examined numerically for Savag' (1983, 
1987) conditions and good agreement with his experiments is achieved. New experi- 
mental results are also presented, which include quantitative space-time information 
regarding the axisymmetric waves. These agree well with both the numerics and the 
earlier experimental work. Further, a related problem is considered numerically. This 
flow is also initially in solid-body rotation, but only the endwalls are impulsively 
stopped, keeping the sidewall rotating. This results in a flow virtually identical to the 
usual spin-down flow for the first few radians of rotation, except in the immediate 
vicinity of the sidewall. The sidewall layer is no longer centrifugally unstable and 
the circular waves on the endwalls are observed without the influence of the sidewall 
instability. 

1. Introduction 
Bodewadt's (1940) similarity solution for the boundary layer flow over a stationary 

disk of infinite extent produced by fluid in solid-body rotation above provides an exact 
solution of the Navier-Stokes equations. The solution, which has been the subject of 
much controversy (Greenspan 1968), depends only on the similarity variable z ,  the 
direction normal to the disk. The full three-dimensional boundary layer flow however, 
depends on z and r, the radial coordinate (9 as well if azimuthal symmetry is broken). 
Bodewadt's (1940) is not the only solution of this type. Earlier, von Karman (1921) 



314 J. M .  Lopez and P. D. Weidman 
presented an exact solution of the Navier-Stokes equations for the flow produced by 
the constant rotation of a disk of infinite extent. The controversy with the Bodewadt 
solution is that it requires inflow from infinity to approach similarity in the boundary 
layer as r -+ 0. The speculation in the literature (Moore 1956; Rogers & Lance 1964) 
has been that this boundary layer flow may ‘break down’ at some finite radius and 
hence Bodewadt’s (1940) similarity solution may not be achieved in practice. There 
is little solid evidence supporting or refuting this conjecture in the literature. 

Virtually all the theoretical and numerical studies are in terms of the boundary layer 
equations (using similarity variables) and the problem of matching the boundary layer 
flow to the external flow has not been satisfactorily resolved in these formulations. 
There have been some experimental studies, using finite disks, but producing the 
external flow in solid-body rotation is non-trivial and the results are inconclusive. 
Rott & Lewellen (1966) give an extensive review of these works. Schwiderski & Lugt 
(1964) conjecture, based on a low-order expansion in r of the steady Navier-Stokes 
equations, that the solution of Bodewadt (1940) would not be stable due to an 
inflection point instability beyond the Reynolds number where the boundary layer 
profiles first show spatial oscillations. 

Savag (1983, 1987) conducted a series of experiments where initially a regime 
corresponding to quasi-steady Bodewadt flow exists. The initial state consists of a 
filled circular cylinder in solid-body rotation of angular rotation rate $2. At time 
t = 0, the cylinder is impulsively stopped. Apart from thin boundary layers on all 
rigid surfaces, the interior flow continues to be in solid-body rotation for some time. 
The stationary endwalls of the cylinder are the finite analogue of Bodewadt’s disk 
of infinite extent. Until secondary motions grow, Savag (1983, 1987) suggests that 
this flow provides a means to examine the stability of Bodewadt’s (1940) solution. 
For a wide range of Reynolds numbers (Re = QR2/v, where R is the cylinder radius 
and v is the kinematic viscosity), Savag (1987) observed that in some mean sense, 
the profile of the boundary layer in his spin-down experiments matched Bodewadt’s 
(1940) profiles (at least for about one rotation period). He also observed that for 
Re x lo4, the boundary layer supported a series of circular (i.e. axisymmetric) waves 
which first become apparent at a radius r = R/2 and propagate radially inwards, but 
do not reach the centre ( r  = 0). In the vicinity of the axis, the boundary layer is 
of Bodewadt type. Based on a series of these spin-down experiments, Savag (1987) 
suggests that the Bodewadt (1940) solution loses stability to these circular waves at 
a local Reynolds number rw(SZ/v)’/2 = 25, where rw is the radius at which the waves 
are observed. (Note, this local Reynolds number is the square root of the usual form 
for a Reynolds number.) The value 25 corresponds to the smallest radius at which 
the waves, i.e. bright circles in the flow visualizations, were observed, with small Q. 

In order to investigate the stability of the similarity solution of Bodewadt (1940), 
one must allow for the growth of disturbances that depend on the radial coordinate. 
Azimuthal variations are also possible; however Savag’ (1983, 1987) experiments 
suggest that the endwall layers first become unstable to axisymmetric circular waves 
as Re is increased, observing spiral modes only at Re much larger than those at 
which the circular waves were observed. Once disturbances with radial variations are 
allowed, a radial length scale must be introduced. The similarity form of Bodewadt has 
no radial length scale. The flow is then not completely specified until the conditions 
on the axis and at large radius are specified, and herein lies the problem for studying 
the stability of the similarity solution. If one attempts to specify conditions at  R = co, 
then solid-body rotation of the interior has v -+ co which is unphysical. The only 
alternative is for R # co, i.e. to consider the case of a finite disk in a finite domain. 
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This then has implications for the role of the interaction between the primary and 
secondary flows. 

Problems associated with studying the stability of steady Bodewadt flows using 
the quasi-steady system provided for by the early-time spin-down experiments are 
the following. (i) The transient nature of the flow means that conclusions regarding 
the long-time stability of the flow are difficult to make. Are the waves a transient 
inertial oscillation following the impulsive stopping of the cylinder? It should be 
noted however, that the experiments of Savag (1987) provide strong evidence that the 
inertial modes of the cylinder do not play a significant direct role in the development 
of the circular waves in the Bodewadt layer. (ii) During spin-down, the sidewall 
boundary layer is centrifugally unstable giving rise to Taylor-Gortler (T-G) cells 
(Maxworthy 1971; Weidman 19766; Neitzel & Davis 1980, 1981; Valentine & Miller 
1994). These grow to finite amplitude in about one rotation period, depending on the 
size of the perturbation to the layer, and subsequently completely dominate the flow. 
Are the waves observed by Savag (1983, 1987) due to the centrifugal instability of the 
sidewall layer interacting with the endwall layer? 

In order to address these issues, a series of numerical and laboratory experiments 
have been performed. One series reproduces as closely as possible the spin-down 
experiments of Savag (1983, 1987), both numerically and in the laboratory. Another 
series of numerical experiments incorporates a modification to the spin-down experi- 
ment which eliminates the centrifugal instability and allows for non-trivial long-time 
fluid motion. Of course, for spin-down in a rigid cylinder, as in the experiments of 
Savag. the fluid eventually comes to rest. 

2. Governing equations 
The equations governing the flow are the axisymmetric Navier-Stokes equations, 

together with the continuity equation and appropriate boundary and initial conditions. 
It is convenient to write these using a cylindrical polar coordinate system ( r , $ , z ) ,  
relative to a stationary observer with the origin at the centre of the cylinder and the 
positive-z axial direction being towards the top endwall. For axisymmetric flow, there 
exists a Stokes streamfunction tp and the velocity vector in cylindrical polars is 

Subscripts denote partial differentiation with respect to the subscript variable. This 
form of the velocity automatically satisfies the continuity equation. It is also conve- 
nient to introduce a new variable, the angular momentum T = rv .  r is proportional 
to the circulation. The vorticity field corresponding to (2.1) is 

where 

The velocity and vorticity fields can be decomposed into azimuthal (9) and merid- 
ional (rn) fields, where 
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so o9 = V x u" and om = V x u3. Further, r plays the role of a streamfunction for 
the meridional vorticity field (Bragg & Hawthorne 1950). In other words, contours 
of r in a meridional plane are cross-sections of vortex surfaces (vortex lines), just 
as contours of y are cross-sections of streamsurfaces (streamlines). These give the 
local direction of the vorticity and velocity vectors in the plane, respectively, and the 
azimuthal components of the vectors give the degree to which the vectors are directed 
out of the plane. 

The axisymmetric Navier-Stokes equations, in terms of y, r and q ,  are 

DI' = V ? r / R e ,  (2.2) 

where 

(2.4) 

2 v.y = -rq, 
D = ( ) t  - ( l / r ) ~ z (  ) r  + ( l / r )wr (  )z, 

V 2  = ( 122 + ( ) r r  + ( l / r ) (  ) r )  

and Re = i22R2/v.  The length scale is the radius of the cylinder R and the time scale 
is 1/52. The other governing non-dimensional parameter is the cylinder aspect ratio 
H / R ,  H being the cylinder height. 

Equation (2.3) shows that the inertial change in the azimuthal vorticity, and hence 
a source of meridional flow, is driven by axial gradients in the angular momentum. 
The physical origin (Davidson 1989) of the source term on the right-hand side of 
(2.3) is the azimuthal component of V x (u" x om). It corresponds to the turning 
of meridional vorticity into the azimuthal direction by the azimuthal velocity. This 
turning of the vorticity vector is responsible for the particular structure of the endwall 
boundary layer being investigated. 

2.1. Computational technique 
The governing equations are discretized using second-order centred differences to 
approximate all spatial derivatives. Trial computations have shown that Z2 symmetry 
(reflection about the cylinder half-height) is only broken following the growth of the 
Taylor-Gortler cells to finite amplitude in the spin-down case, and it is observed 
not to be broken for the range of parameters considered here in the modified flow. 
Consequently, all computed results presented correspond to flows with Z2 symmetry 
imposed. The finite difference grid is stretched in the z-direction in order to better 
resolve the endwall boundary layer. Although the T-G instability of the sidewall 
layer results in an axial periodic structure that may be affected by the coordinate 
stretching, sufficient resolution is employed for this not to be a concern. The grid is 
uniform in the r-direction as waves with large radial gradients travel in the radial 
direction across most of the radius, and hence there is no preferred radial location 
where stretching would be beneficial. The axial stretching is accomplished by 

z = (z' + a sin(nz'))H/2R, 

where z' varies uniformly over the interval [0,1] and the stretching factor a = 0.1 has 
been used for all the results presented here. The top endwall is located at z = H/2R 
and z = 0 is the location of the cylinder half-height. The number of grid points in 
the radial and axial directions for the half-cylinder are nr and nz. 

The axis, reflection, and boundary conditions are, for both the spin-down and 
modified flows: (i) on the axis ( r  = 0), r = q = y = 0; (ii) at the cylinder half-height 



Stability of' stationury endwall boundary layers during spin-down 377 

( z  = 0), rz = q = y = 0; (iii) on the top endwall ( z  = H / 2 R ) ,  f = y = 0 and 
q = -yzz / r ;  ( iv )  on the sidewall ( r  = I), y = 0 and q = - y r r ;  however the boundary 
condition for f differs between the two cases: r = 0 for spin-down and f = 1 for 
the modified flow. 

The derivative boundary conditions are approximated by one-sided differences. The 
reflection condition at z = 0, in discrete form, is 

r1.i = (4f2,1 - r 3 , i ) / 3 3  

and is third-order accurate. The boundary conditions on q are obtained by expanding 
y to third order as Taylor series about the first and second grid points in from the 
boundaries and eliminating the third-derivative terms between them, noting that y 
and its first derivatives vanish at the boundaries. This results in second-order-accurate 
estimates for yrr  and y z z  on the sidewall and endwall respectively. The discrete q 
conditions are then 

qj,nr = - ( 8 ~ j , n r - 1  - ~1j,nr-2)/26~', 
and 

qnz , l  = - ( 8 y n z - l , i  - y,z-z,i)/(2ri(6z'dz/dz')2), 
where 6 r  = l / ( n r  - 1) and 6z' = l /(nz - 1). 

predictor-corrector scheme. Writing (2.2) and (2.3) as 
The discrete versions of (2.2) and (2.3) are integrated using a second-order 

and 

q:l = G Z ( r n , y n , ~ " ) ,  
where GI and G2 represent nonlinear operators following the second-order central 
differencing of the equations and the superscript n denotes the nth time level t = n6t. 
The predictor-corrector algorithm entails the following stages, starting from known 
values rn, q", and y " :  

( a )  Evaluate r* = r "+O.56 tGl (T" ,y" ,y" )  and q* = y"+0.56tG2(f ",q",y") on the 
interior grid points. 

(b )  Solve VZy* = -rq* using generalized cyclic reduction (Sweet 1974). 
(c) Implement boundary conditions on r*, q*, and y*. 
( d )  Evaluate rn+l = r" + 6tG,(r*,q*, tp*)  and qrl+' = q" + 6tGr(f  *,q*,y*) on the 

(e) Solve VZy"+' = -rq"+' using generalized cyclic reduction. 
v) Implement boundary conditions on rn+', qn+l, and yn+'. 
All the computations are started impulsively from a state of solid-body rotation, 

i.e. tp = q = 0 and r = r2. 
All of the results presented were computed on grids of nr xnz = 301 x(1+300H/2R). 

This resolution was found to be more than adequate for the largest Re considered, 
and the low-Re cases were over-resolved. A time step 6 t  = 0.01 was used in most 
cases. All computations were performed using 64-bit arithmetic. 

interior grid points. 

3. Spin-down in a finite-length cylinder 
Neitzel & Davis (1981) report on computations of impulsive spin-down in a 

finite-length cylinder for Re up to 4 x lo3. However, their study concentrated on 
the sidewall centrifugal instability and did not address any possible instabilities in 
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the endwall layers. Numerical evidence from the present computations of circular 
waves at Re w lo3 will be presented. Valentine & Miller (1994) have also presented 
computations of impulsive spin-down in a finite-length cylinder for Re up to 4 x lo3. 
They mention the existence of a ‘solitary wave’ that propagates from the endwall to 
the midplane along the central axis, but do not identify any circular waves in the 
endwall layers. 

It is instructive to consider the flow in terms of the vortex lines. Initially, the fluid is 
in solid-body rotation with the cylinder. The vortex lines are everywhere in the axial 
direction, i.e. r = r(r) = r2 .  In the present coordinate system ($2.1), the vortex lines 
all emanate from the bottom endwall and terminate at the top endwall. When the 
cylinder is stopped impulsively at t = 0, the vortex lines can no longer begin or end 
on the now stationary endwalls. Also, on the sidewall ( r  = 1) r = 0 for t > 0 while 
the interior flow is still in solid-body rotation with r = r2.  Thus the vortex lines are 
bent radially outwards from the axial direction in the thin endwall boundary layers 
formed following the impulsive stop. The radial bending of the vortex lines produces 
axial gradients in r ,  and as a consequence of the source term in (2.3), any bending of 
the vortex lines into the radial direction must also be accompanied by a bending into 
the azimuthal direction. In the vicinity of r = 1, the vortex lines in the endwall layers 
are again bent, this time into the axial direction within a thin sidewall layer where the 
vortex lines from the top and bottom layer connect. This bending of the vortex lines 
occurs for all Re. At early times following the impulsive stop, Re only determines 
the thickness of the wall layers into which the vortex lines are bent. The positive 
and negative axial gradients in r in the bottom and top endwall layers respectively 
give rise to azimuthal components of vorticity there inducing radial inflow in these 
boundary layers. Consequently, the flow, initially consisting of a purely azimuthal 
velocity and a purely axial vorticity (the primary flow, with y = 0 everywhere), 
acquires an azimuthal component of vorticity following the impulsive stop, due to 
vortex line bending. 

The azimuthal component of vorticity induces a meridional velocity (the secondary 
flow, with non-zero y ), consisting of two recirculation cells with radial inflow along 
the endwall layers, flow into the interior from the endwall layers, radial flow from 
the interior into the sidewall layer, from where the flow is returned to the endwall 
layers. If this secondary meridional flow is strong enough (as measured by Re), then 
significant nonlinear interactions between the primary and the secondary flow are 
possible. It is these interactions that are addressed here. 

One of these interactions occurs in the endwall layers and leads to a boundary layer 
with spatial oscillations - a Bodewadt-type boundary layer. For sufficiently large Re 
(0(103) or larger), the radial inflow in the layers will tend to carry fluid with angular 
momentum r = rv from large to smaller radii, essentially pulling the vortex lines 
in the layer radially inwards (within the layers, near the endwalls, the vortex lines 
lie essentially parallel to the endwalls). Thus, r increases in the direction normal to 
the endwall, inducing radial inflow, and then decreases, inducing radial outflow. This 
outflow pulls the vortex lines back to larger radii causing another change of sign 
in the axial gradients of I‘. In this way, a multi-layered boundary layer structure 
is built up with the characteristic spatial oscillations of the Bodewadt profile. This 
development of the boundary layer is described in detail in $6.1 and illustrated in 
figure 5. The structure of the boundary layer at this time is not of similarity form: it 
is not independent of the radial coordinate as the layer supports waves. The observed 
structure of the waves from the numerics agrees with Savag’ (1983, 1987) description 
of the circular waves he observed. Below, more detailed comparisons between the 
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computed flows and the experimental flows are presented along with details of the 
structure of the boundary layers and the circular waves. 

While this study is primarily concerned with the structure of the endwall layers and 
the circular waves they support, it is important to be reminded of the other phenomena 
present during the impulsive spin-down. One such phenomenon that has attracted 
much attention is due to the sidewall layer being potentially centrifugally unstable 
during some part of the spin-down evolution. Neitzel & Davis (1980) describe 
in detail how the sidewall layers during spin-down may be subject to ‘transient’ 
instability (Davis 1976), since the flow is initially globally stable (solid-body rotation) 
and evolves to another globally stable state (rest). During the spin-down, the angular 
momentum in the sidewall layer decreases in the radial direction, allowing for the 
possible growth of T-G cells. Whether these cells grow to finite amplitude, and if 
so, when their onset takes place and with what wavelength, depends on Re and how 
large a perturbation the sidewall layer is subjected to. The wavelength of the T-G 
cells varies with the sidewall layer thickness, and the sidewall layer is continuously 
becoming thicker due to horizontal diffusion of vorticity (prior to the onset of T-G 
cells). So, two spin-downs differing only in the size of the perturbations will have 
different onset times for T-G cells, and since the sidewall layers are of different 
thicknesses at these times, the wavelengths of the T-G cells will also be different. 

The susceptibility of the sidewall layer to the growth of T-G cells is present in 
cylinders of both finite and infinite length; however the number and parity of the 
cells clearly depends on the length. Another phenomenon present during spin-down, 
that is not present in cylinders of infinite length and is independent of the stability 
state of the sidewall layer, is the formation of corner ring vorticies at the junctions 
between the endwalls and the sidewall. Their formation is not related to questions of 
stability, but rather is due to a combination of the bending of vortex lines around the 
corners, and the horizontal diffusion of vorticity transporting the vortex lines in the 
sidewall layer radially inwards. This leads, locally in the corner region, to negative rz 
near the top endwall, then a small region of positive T z ,  followed by essentially zero 
Tz in the sidewall layer further away from the top endwall. This localized region of 
alternating sign in T z  results in azimuthal vorticity in the form of a corner vortex. 
The same process occurs in the bottom corner. For Re greater than about 2.5 x lo3, 
the process occurs within the first rotation period. The process depends on Re (see 
$6) as it relies in part on the horizontal translation of the vortex lines due to the 
thickening of the sidewall layer by viscous diffusion. Once formed, the corner vorticies 
are ingested in the endwall layer by the radial inflow in the region of the endwall 
layer closest to the endwall. 

One implication of the presence of corner vorticies for the study of the stability 
of Bodewadt type layers in a spin-down experiment is that unlike the effects of the 
T-G instability of the sidewall, which could be delayed to some extent by performing 
experiments with very low levels of perturbations (see Mathis & Neitzel 1985), the 
corner vorticies are formed by the kinematics of the flow and their formation cannot 
be controlled by controlling the noise level in an experiment. 

4. Impulsive spin-down experiment 
An experiment was performed to monitor the trajectory of circular disturbances 

on one endwall of a fluid-filled cylinder brought suddenly to rest from an initial 
state of solid-body rotation. We adapted the Plexiglas cylinder used in the spin-down 
experiments of Weidman (1976b). The thin ring bearing supports were left intact, 
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but both fitted glass endwalls were removed and the end surfaces of the cylinder 
were re-machined accurately parallel. One end of the cylinder was then fitted with an 
aluminium plug designed to accommodate a direct-drive synchronous stepping motor 
driven by a Superior Electric Slo-Syn Indexer operating at 200 steps/revolution. The 
opposite end of the cylinder was retrofitted with a clear Plexiglas plug gently scribed 
on the fluid side with a target pattern of cross-hairs centred on five concentric circles. 
The lines were made visible by rubbing black waterproof ink into the etched target 
pattern. The modified cylinder had an average inner diameter 15.12 cm with run-out 
f0.003 cm over the cylinder length of 26.3 cm giving an aspect ratio H / R  = 3.48. The 
opposite endwalls were measured to be flat and parallel within k0.002 cm over the 
diameter. 

Data were taken with a digital video camera at 30 framess-' and recorded on 
a magnetic disk. Reflection patterns from water seeded with a small amount of 
Kalliroscope were used to identify the unsteady circular waves. Adequate uniform 
lighting was provided by a 30 cm diameter 32 W circular fluorescent tube mounted a 
short distance away and concentric with the transparent endwall. The video recorder 
looked through the lighting system and was located about 1 m away along the axis 
of the cylinder so that the endwall filled the field of view. The cylinder was rotated 
at constant angular speed set by the indexer and was measured by interrupting a 
light encoder once per revolution with a metal shim attached to the perimeter of 
the cylinder. After rotating at 2.39 rads-' for half an hour to achieve solid-body 
rotation using spin-up time estimates from Weidman (1976~1, the motor indexer was 
stopped. Observation of the rotating cross-hairs in the video recording showed that 
the lightweight Plexiglas cylinder stopped within 1/30 s . This then identified the time 
origin. The fluid temperature recorded before the run was 21.8 "C corresponding 
to a kinematic viscosity of 0.00962 cm2 s-' for pure water. No correction for fluid 
density or viscosity was made for the small amount of Kalliroscope added for flow 
visualization or for the slight elevation in water temperature that may have taken 
place during spin-up. The Reynolds number for this impulsive spin-down experiment 
was Re = 1.397 x lo4. 

Analysis of 25 individual frames during the short period of non-dimensional time 
3 < t < 10 of circular wave evolution was performed on a computer. Circular 
waves appeared as bright circles superimposed on a darker matted background. 
A priori identification of these bright circles with a particular part of the wave 
pattern is difficult (cf. Savag 1985; Weidman 1989), but they most certainly represent 
regions in the unsteady flow where the Kalliroscope flakes are actively rotating, i.e. 
regions of relatively high azimuthal vorticity. The average diameters of identifiable 
circular disturbances were measured by clicking a movable cursor on the bright circles 
intersected by a cross-hair and recording pixel positions. Calibration of distances 
between pixel positions was easily performed using the inscribed concentric circles 
of known diameters. Though somewhat subjective, we also measured the average 
diameter of the debris boundary defined as the boundary marking the growing region 
of vortical disturbances emanating from the corner of the cylinder. The debris 
boundary was initially axisymmetric and well-defined, but became more irregular and 
diffuse as time progressed (cf. Savag 1987, figure 2). 

5. Modified flow: spin-down with rotating sidewall 
As already mentioned in the Introduction, whilst the endwall layers in a finite 

cylinder following impulsive spin-down to rest from a state of solid-body rotation 



Strihi1it.v of stationary endwall boundary layers during spin-down 381 

I 

r 

FIGURE 1. Contours of r for Stokes flow and H / R  = 1. These are determined from the closed-form 
solution for the steady flow inside a cylinder with stationary endwalls and a rotating sidewall in the 
limit Re + 0, given by Khalili & Rath (1994). 

are Bodewadt like, the flow has limitations for a study of the long-time stability of 
the endwall layers. As the flow spins down to rest, any transient instabilities are 
eventually stabilized. Also, the formation of corner vorticies and the susceptibility of 
the sidewall layer to T-G instability, coupled with the radial inflow in the endwall 
layer, leads to ingestion of large-amplitude disturbances (corner vorticies and T-G 
cells) into the layer, causing major disruptions of the layer which are unrelated to the 
stability of the layer itself. In an attempt to alleviate these problems, a modified flow 
is also examined. The modified flow consists of a cylinder of aspect ratio H / R  with 
the fluid inside initially in solid-body rotation with the cylinder. The modification is 
that at t = 0 only the endwalls are impulsively stopped and the sidewall continues to 
rotate. 

The simple modification provides a number of improvements over the usual spin- 
down flow for the study of the endwall layers. The modified flow has a non-trivial 
solution for all Re, whereas the spin-down flow evolves to rest (the trivial solution) for 
all Re. Even in the limit of Stokes flow (Re = 0), the modified flow has a non-trivial 
(and unique steady) solution. Khalili & Rath (1994) provide an analytic solution of 
the modified flow at Re = 0 (figure 1 is a plot of this flow for H / R  = 1). 

The main feature of the modified flow, which exists for all Re > 0, is that for all 
time following the impulsive stopping of the endwalls, all the vortex lines emanate 
from the corner ( r , z )  = (1,-H/2R) and terminate at the corner ( r , z )  = (1,H/2R).  
Further, these vortex lines are not parallel to the rotation axis; therefore, for Re > 0, 
there is always an associated secondary flow with q # 0 and y # 0. Figure 2 is a plot 
of v(r ,z  = 0), the azimuthal velocity distribution at the cylinder half-height, for the 
Re = 0 analytic solution of the modified flow. It shows that even at the centreline in 
the Stokes flow limit, the radial distribution of z; does not correspond to solid-body 
rotation. For Re > 0, the meridional circulation, which is primarily directed in the 
outwards radial direction in the interior of the cylinder, also drives the flow away 
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0 
Y 

FIGURE 2. Radial variation of the azimuthal component of velocity u, at the cylinder half-height 
z = 0 from the closed-form Stokes flow solution in figure 1. 

from solid-body rotation. So, the modified flow is not ideal for the long-time study 
of the stability of Bodewadt flow, which requires steady solid-body rotation of the 
fluid above the boundary. However, in the following section we will see that for such 
a study it offers a vast improvement over the spin-down flow, which has u(r ,z)  = 0 as 
t -+ co, and for early times following the stopping of the endwalls, the modified flow 
is as good or better an approximation to a Bodewadt flow. 

6. Results 
The results are presented in the following order. Both the spin-down and modified 

flows are presented in tandem. First, comparisons with Savag’ experiments with 
H/R = 2 and Re = 9632 are presented. Then, the results of the present spin- 
down experiment7 with Re = 1.397 x lo4 and H/R = 3.48, are presented along with 
computations for the same conditions and the corresponding modified flow. Next, 
the development of the flow from Re = lo3, where evidence of circular waves is just 
detectable, to Re = 2 x lo4 (spiral waves are reported by Savag (1983, 1987) for Re 
greater than about 3.8 x lo4), are presented for H/R = 3.48. Finally, the influence of 
H/R is investigated for Re = 9632. 

It is instructive to view the flow evolution as a space-time plot of y, the azimuthal 
component of vorticity, computed on the top endwall and the top half of the sidewall 
(y on the other half of the sidewall and the bottom endwall is just a reflection of this 
due to the Zz-symmetry). The horizontal axis on the space-time plots is time, from 
t = 0 + 15 and the vertical axis starts halfway up the sidewall at ( r  = 17z = 0), and 
progresses along the sidewall to the corner ( r  = 1, z = H/2R), then proceeds along the 
top endwall to the axis ( r  = 0,z = H/2R). The space-time plots show the ‘footprints’ 
on the walls of vortical waves in the various boundary layers. They also give a clear 
visual indication of the phase velocities of the waves. In order to help interpret these 
space-time plots, contour plots of y in the top endwall boundary layer (covering the 
region r = 0 -+ 1, z = H/2R - 0.25 + H/2R) at various times are also provided. 
These clearly show the development of a multi-layered boundary layer structure and 
the evolution and propagation of the waves. A few plots of the contours of y ,  q 
and r over the half-meridional plane r = 0 -+ 1, z = 0 --+ H/2R are also presented 
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in order to put the space-time plots and the plots of q in the top endwall boundary 
layer into perspective. 

6.1. Comparison with Suva2 ( R e  = 9632, H / R  = 2.0) 
The spin-down experiment of Savag (1983) is first computed in order to reproduce the 
observed circular waves. The experiment was conducted in a cylinder of aspect ratio 
H / R  = 2.0 with R = 10.74 cm . The initial rate of rotation was Q = 0.785 rad s-l and 
the working fluid (water at 23 "C) had a kinematic viscosity v = 0.0094 cm2 s-l, 
corresponding to Re "N 9632. Figure 3 summarizes the evolution of the endwall 
boundary layer following an impulsive stop at I = 0. The figure shows contours 
of q in the neighbourhood of z = H / 2 R  for times t = 1 .+ 10. The left column 
(a) corresponds to the impulsive stopping of the whole cylinder (Savaq experiment), 
while the right column (6) corresponds to the modified flow where only the endwalls 
are impulsively stopped at t = 0 and the sidewall continues to rotate. Figure 4 gives 
the corresponding space-time diagrams for the two flows for 0 < t < 15. 

At time t = 3 (figure 5 ) ,  the y contours show that the flow near the endwalls 
is directed radially inwards, then radially outwards, then radially inwards, with 
increasing axial distance from the endwalls, leading to a multi-layered boundary 
layer structure. Note that the flow structure is virtually independent of whether the 
sidewall is stationary (figure 5a) or rotating (figure 5b), except for the r-contours 
(vortex lines) in the immediate vicinity of the sidewall. The y -  and q-contours 
only differ significantly between the two flows in the vicinity of the corner ( r  = 1, 
z = H / 2 R ) .  The endwall boundary layer is established in about one half-rotation time 
(i.e. by t = 3) .  This is somewhat sooner than for the boundary layer on a rotating 
disk following impulsive spin-up from rest. In that case, the layer takes about one 
rotation time to become established (Benton 1966). By t = 4, spatial oscillations in 
the radial velocity have developed into recirculation cells which propagate along the 
axis to reach the midplane z = H / 2 R  by t NN 5,  as indicated by the closed contour 
in the space-time plot located near t NN 5 and the cylinder half-height z = 0 (figure 
4). These are the 'solitary waves' and associated 'vortex breakdown bubbles' referred 
to by Valentine & Miller (1994) when describing the spin-down flow for Re = 3000 
and H / R  = 4. Valentine & Miller (1994) find that when these internal waves impinge 
on the midplane of the cylinder, the T-G instability of the sidewall layer is triggered. 
In the present calculations however, we find that the onset of T-G cells is very 
much dependent on the level of spatial and temporal resolution used: the coarser 
the resolution, the earlier the onset time of the T-G instability. For sufficiently fine 
resolution (nr = 301,6t = 0.01 using second-order space and time integration), we find 
that the T-G instability does not set in until after two 'solitary waves' have impinged 
on the sidewall at the midplane (figure 4a); whereas with coarser resolution, we find 
that T-G instability sets in following the first impingement. It is also interesting to 
note that even though the flow at these times has a large meridional recirculation 
zone in the interior, the vortex lines (r -contours) show virtually no departure from 
being parallel to the axis. So, in the interior, the interaction between the primary 
flow ( r )  and the secondary flow ( y )  is quite minimal. This is in sharp contrast to 
situations where vortex breakdown occurs (e.g. Lopez 1990; Brown & Lopez 1990; 
Lopez & Perry 1992). In these cases, the vortex lines ( r )  and the streamlines ( y )  tend 
to coincide quite closely, leading to a large departure from cyclostrophic balance in 
the interior. 

At t NN 2, footprints of circular waves on the endwalls first appear (figures 3 and 4). 
Savag (1983) reports that the waves become visible in his experiment after about 3 s 
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FIGURE 3. Contours of the azimuthal component of vorticity q ,  in the vicinity of the endwall 
z = H/2R, at various times as indicated, for Re = 9632 and H / R  = 2.0. The contours in column 
( a )  correspond to the spin-down flow where at t = 0 all cylinder walls are impulsively stopped, 
and those in column (b)  correspond to the modified flow where only the endwalls are impulsively 
stopped, while the sidewall continues to rotate. The computations imposed Zz-symmetry and used 
nr = 301, nz = 301, 6 t  = 0.01, and a = 0.1. The solid lines are positive contours and the dashed 
lines are negative contours. 
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FIGURE 4. Space-time plots for (a )  the spin-down flow and ( h )  the modified flow, as in figure 3, 
consisting of contours of q on the top endwall and the top half of the sidewall. Space is in the 
vertical direction. starting at the cylinder half-height z = 0 on the bottom, progressing up to the 
corner ( r  = 1,z = H / 2 R ) ,  and then continuing along the endwall to the axis r = 0 at the top of the 
plot. 
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( t  w 2.36). These travel radially inwards on the endwalls with a gradual slowing until 
their footprints disappear at r = 0.25. The phase velocity of the first wave, estimated 
from figure 4(a) is 1.4 cm s-l (dimensionalized by Savag' (1983) experimental values 
of R = 10.74 cm and Q = 0.785 rad sP1 ). Savag (1983) reports that the phase velocity 
estimated from his flow visualization is about 1.3 cm s-' with a slight decrease towards 
the centre. The footprints of a second wave on each endwall become evident at t w 4 
and these also travel radially inwards to r w 0.25, but more slowly (w 0.9 cm s-l) 

than the first waves. The slowing of the waves as they proceed radially inwards is 
also evident in the space-time plots (figure 4). 

Defining a wavelength for the axisymmetric waves is not straightforward as both 
their spatial wavelength and their phase speeds are continuously changing as they 
progress radially inwards and as the secondary flow evolves (spins down). In his 
figure 3(e), Savag (1983) provides a rather subjective method to define a wavelength 
for a particular wave at a particular point in its evolution. The range of his observed 
wavelength, non-dimensionalized by the cylinder radius, is 0.10-0.22. From our 
computations presented in figure 3, one could subjectively state that the wavelengths 
are also in the range 0.1-0.2. 

Savag (1983, 1987) observes that the endwall boundary layer is stable near the 
origin, as evidenced by the relative calmness of the flow in the central part of the 
disk in all the flow-visualization observations. He defined a local Reynolds number, 
~ ( Q / v ) ' . ~ ,  and observed that for values less than some critical value, the waves were 
not detected. From his various measurements, he concluded that the critical value 
is 25 k 5. The present numerical results agree with those observations. Evidence of 
the waves not progressing all the way to the origin is clear in both figures 3 and 4. 
Further, the two figures indicate that the waves do not proceed towards the origin 
beyond r w 0.28 for the Re = 9632, H / R  = 2.0 case, giving a critical local Reynolds 
number of = 27.5. 

At time t = 4, there is evidence (figures 3a and 4a) of a corner vortex forming and 
by t = 5 this vortex is very distinct. At these times (figures 5a), the sidewall layer 
shows no hint of any growth of disturbances due to instability. At t = 5,  the corner 
vortex is ingested into the endwall layer. Initially, it travels with a uniform speed 
until it reaches r x 0.67, then its footprint appears much the same as those of the 
earlier endwall waves. Savag' (1983) figure 2 ( d ) ,  corresponding to t = 6.6, shows the 
presence of the debris boundary of vortical disturbances emanating from the corner 
to be located at r w 0.75. At t = 6, figure 3(a) shows the y-front of the ingested 
corner vortex at r = 0.89 and at t = 7 it is located at r x 0.78, placing it at r w 0.82 
at t = 6.6. Also, from the space-time plot (figure 4), the footprint of the ingested 
corner vortex on the endwall at t = 6.6 is centred at r x 0.81. Following the ingestion 
of the first corner vortex, another forms and is subsequently ingested at t z 7.5. 

Beyond t = 6 ,  the flow evolution in the endwall boundary layer in the spin-down 
flow is dominated by the ingested corner vortices. There is a continual ingestion of 
these vortices into the endwall layer and any further study of the Bodewadt-type 
flow is severely compromised. However, comparing the spin-down flow and the 
modified flow with the rotating sidewall for r < 1 - 6, where 6 is approximately 
the sidewall layer thickness at a particular point in time, the two flows are virtually 
indistinguishable up to the time when the corner vortices are ingested in the spin- 
down flow. Note that corner vorticies never form in the modified flow. Even beyond 
the time when the corner vortices are ingested in the spin-down flow, the interior of 
the two flows agree to a large degree. In particular, the internal waves reported by 
Valentine & Miller (1994) for the spin-down flow are also present in the modified flow. 
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Further, the structure of the axisymmetric waves in the endwall boundary layer is the 
same in the two flows, up until the upstream influence of the ingested corner vortex 
becomes significant at t = 8 (figure 3). This correspondence between the two flows 
indicates that the axisymmetric waves reported by Savag (1983, 1987) are not due 
to any centrifugal instability of the sidewall layer in his experiment, nor to vortical 
disturbances ingested from the corner. It provides evidence that these waves are a 
local response to the underlying structure of the endwall boundary layer; in essence, 
a form of instability of the Bodewadt flow, as indicated by Savag (1983, 1987). 

6.2. Comparison between experiment and numerics for Re = 1.397 x lo4 and 

The measurements of the radius of the bright rings corresponding to the circular 
waves from the experiment described in §4 are presented on a space-time plot in 
figure 6. Figure 6(a) shows the experimental data superposed onto a space-time plot of 
contours of constant azimuthal vorticity, q ,  from the numerical computations to aid in 
comparisons. Figure 6(b) is a detail of the trajectories over the period 3.00 < t < 8.25 
and 0.20 < r d 0.75. In this experiment, five circular wave disturbances were 
identified before the debris from the edge dominated the boundary layer flow. The 
first observable waves, labelled 1 and 2, are spatially broad disturbances that clearly 
propagate at nearly equal and constant dimensionless speed d r l d t  = -0.136. The 
remnants of these disturbances, especially that of wave 2, seem to be fossilized in the 
fluid at small radii. Waves 3, 4, and 5, on the other hand are much narrower and 
actively follow the back side of local folds in the q-contours. This trend is especially 
evident for wave 4 which starts out on the back side of a single vorticity fold, but splits 
into two disturbances 4a and 4b prior to the development of a new local vorticity 
fold develops. Note that the speed of waves 3,4, and 5 decreases with time, as do the 
corresponding waves in the numerics, in contrast to the constant propagation speed 
of the first two observable waves in the experiment. 

The observed debris boundary, indicated in figure 6 by the open circles, tracks 
the progression of the ingested corner vortex from the numerics very well. This is 
especially so during the early evolution of the corner vortex until it reaches r w 0.5. 

The wave trajectories clearly follow the trend in the vorticity fold pattern com- 
puted for the experimental conditions. Moreover, it is apparent that the measured 
debris boundary, first detected at t = 5.4 and r w 0.88, was triggered by the first 
corner vortex that appeared at t = 5.0 in the computation. We conclude that the 
numerical simulation corroborates the experimental observations both qualitatively 
and quantitatively. 

The numerical development of the endwall layer can also be followed in figure 7 
where, as in figure 3, the q-contours in the vicinity of the endwall at various times 
as indicated are plotted for both (a) the spin-down flow (corresponding to the 
experiment), and (b )  the modified flow. The bifurcation of one wave into two, as 
observed in the experiment for wave 4 splitting into waves 4a and 4b, can be seen in 
figure 7 between t = 7 and t = 8. This splitting of the wave is evident in both the 
spin-down flow and the modified flow. It is interesting to note that even at t = 10, 
by which time a number of corner vortices have been ingested into the layer and 
have propagated radially inwards more than one third of the way to the origin, the 
boundary layer structure for the two flows, for r < 0.3, remains remarkably similar. 

The agreement in the wave structure between the spin-down flow and the modified 
flow, together with the advantages of the modified flow, clearly indicate it to be a 
suitable flow in which to study the axisymmetric endwall waves. Further, the close 

H I R  = 3.48 
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FIGURE 6. Space-time plots for the spin-down flow with Re = 1.397 x lo4 and H I R  = 3.48. (a) 
Locations of the axisymmetric waves in the endwall boundary layer, 0,  and the debris boundary, 0, 

from the experimental measurement, together with contours of 4 on the top endwall and the top 
half of the sidewall. ( b )  A detail of (a) over 3.00 < t < 8.25 and 0.20 < r < 0.75. The computation 
imposed Z2-symmetry and used nr = 301, nz = 523, 6 t  = 0.01, and LI = 0.1. The solid lines are 
positive contours and the dashed lines are negative contours. 

agreement between the numerics and the present experiment and those of Savag (1983, 
1987) indicates that the numerical simulations are a suitable tool for the investigation 
of these waves. In the following subsections, the influence of the two governing 
parameters, Re and H / R ,  on the waves is studied numerically in the modified flow. 
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FIGURE 7. Same as in figure 3, but for Re = 1.397 x lo4, H I R  = 3.48, and nz = 523. 
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6.3. Flow development with increasing R e  f o r  H I R  = 3.48 for  the mod$ed$ow 
Having established that the axisymmetric waves on the endwall boundary layers are 
a response to the local structure of the boundary layers, we now investigate the waves 
in the modified flow where the sidewall continues to rotate, thus eliminating the 
presence of corner vorticies and centrifugal instability of the sidewall layer. 

The development of the endwall boundary layer as Re is increased is summarized 
in a sequence of space-time plots (figure 8) for HIR = 3.48. From these, it is clear 
that even for Re as low as 1.25 x lo3, a pair of undulations develops following the 
impulsive stop. Both these undulations are spatially broad and of relatively small- 
amplitude. One would expect that such small-amplitude, broad waves would not be 
detectable in a flow visualization experiment using aluminium flakes or Kalliroscope. 
By R e  = 2.5 x lo3, the wave amplitude has increased, the wavelength has decreased, 
and the phase speed has increased significantly. The spin-down and the modified 
flows are virtually indistinguishable for a considerable time, and for t > 5,  the main 
contributing factor to their distinction is that the spin-down flow is evolving to rest, 
i.e. there is no applied torque in that flow, whereas in the modified flow there is 
still torque applied at the sidewall. For low R e  < 2.5 x lo3 and t < 10 there is not 
even the presence of a corner vortex in the spin-down flow to distinguish the two 
flows. Corner vortices in the spin-down flow with H / R  = 3.48 appear at t = 5 for 
R e  = 5 x lo3 and earlier for larger Re. 

As R e  is increased through 5 x lo3, 9.632 x lo3, 1.397 x lo4, and 1.74 x lo4, there is a 
clear trend that the waves travel faster with larger Re,  and their wavelength is smaller 
with larger Re. For R e  < 9.632 x lo3, it is apparent from figure 8 that each wave 
travels radially inwards with no noticeable interaction with preceding or following 
waves, that they remain a single entity, and fade away as they reach r x: 0.2. For 
larger Re, however, we find that waves bifurcate, as noted in the experiment ($6.2), 
and coalesce. The coalescence events occur as a wave slows down as it proceeds 
radially inwards; it is slowed further still by the presence of a preceding wave, and 
a following wave ‘runs into it’, coalescing with it. These events are discernible in the 
Re = 1.74 x lo4 case in figure 8, where at later times, at about r = 0.5, two folds 
become one. It is not as easy to see these events in the y-contours of figure 9, as 
the ‘snap-shots’ are given too far apart. However, it is particularly evident from these 
types of plots when they are animated with fine temporal resolution on a graphics 
workstation. 

For all the cases of the modified flow considered, when they were evolved to longer 
times ( t  > 60), it was found that the waves eventually disappeared and the boundary 
layer had little radial variation (apart from that due to its finite length), although the 
Bodewadt-type spatial oscillations in the axial direction were still present. 

We find two trends from the various computations of the modified flow. As time 
progresses, the induced secondary meridional flow, which in the interior primarily 
consists of a radial flow towards the sidewall, advects the vortex lines to larger radius. 
The vortex lines remain essentially parallel to the axis. So, although the interior 
continues to rotate with r largely independent of z ,  the flow is far removed from a 
state of solid-body rotation. The other trend is that with smaller Re, the vortex lines 
migrate out towards the sidewall faster and the asymptotic long-time limit of the 
flow is further from solid-body rotation. Figure 2 shows the u-profile at the cylinder 
half-height, illustrating the departure from solid-body rotation (v = r )  in the limit as 
R e  -+ 0, at steady state. The end result of this departure is that we no longer have 
a situation corresponding to the Bodewadt flow. In essence, the unstable endwall 
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FIGURE 8. Space-time plots for the modified flow with H / R  = 3.48 and Re as indicated. In all cases 
nr = 301, nz = 523, a = 0.1, but 6 t  varies for Re as follows: (i) Re = 1.25 x lo3, 6 t  = 1.25 x (ii) 
Re = 2.5 x lo3, 6 t  = 2.5 x 
(v) Re = 1.397 x lo4, 6 t  = lop2, (vi) Re = 1.74 x lo4, 6 t  = 

(iii) Re = 5 x lo3, 6t = 5 x (iv) Re = 9.632 x lo3, 6 t  = 
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FIGURE 9. Same as in figure 3, but for Re = 1.74 x lo4, H / R  = 3.48, and nz = 523. 
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FIGURE 10. Space-time plots for the modified flow with Re = 9.632 x lo3. (a) H / R  = 0.5, nr = 301, 
nz = 76, a = 0.1, and 6 t  = lo-’. (b) H / R  = 8.0, nr = 301, nz = 1201, a = 0.1, and 6 t  = 

boundary layer stabilizes itself by inducing a secondary meridional circulation which 
advects the vortex lines responsible for the layer’s instability into a configuration 
which no longer results in an unstable endwall layer. 

6.4. Influence of H I R  for  Re = 9632 for  the modijiedflow 
Here we present sample results for Re = 9632 and H / R  = 0.5, 2.0, and 8.0 in the 
modified flow. The main result here is that the waves are spatially broader, travel 
more slowly, and have smaller amplitude as H / R  is reduced. We have found that as 
H / R  is increased beyond = 5,  its effects rapidly diminish, and that H / R  = 8.0 is large 
enough for the flow to be considered at an asymptotic limit of large H / R .  We did 
not explore the limit H / R  + 0. Figure 10 together with figure 4(b) show the space- 
time plots for the three H / R  values, demonstrating this trend. The corresponding 
q-contours in the endwall region are displayed in figures 11, 3, and 12, both for 
the spin-down flow and the modified flow. These figures also show the above 
trend. 

The diminished wave activity for smaller H / R  at fixed Re can be understood 
as follows. For small H I R ,  the meridional flow is mostly radial: outwards in the 
interior and inwards in the layer. The outwards radial flow in the interior tends 
to advect the vortex lines to larger radii, which still remain essentially parallel to 
the axis (Taylor-Proudman theorem). In so doing, the interior flow is no longer in 
solid-body rotation and the corresponding boundary layers on the endwalls, while 
still showing the characteristic oscillations of the Bodewadt solution, have spatial 
oscillations in the axial direction of smaller amplitude. This adjustment of the 
primary flow (the advection of the vortex lines to larger radii) by the secondary 
flow acts to stabilize the boundary layer. In contrast, for H I R  large, the meridional 
flow is mostly axial, away from the endwall layers in the interior and in towards 
the endwalls in the sidewall layer with a weak radial flow from the interior into the 
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FIGURE 11. Same as in figure 3, but for H 1 R = 0.5 and nz = 76. 

sidewall layer near z = H/2, which for large H/R is far removed from the endwalls. 
The relatively weaker radial flow in the interior, compared with small-H/R cases, 
does not advect the vortex lines to such large radii. In comparison, the interior flow 
is closer to solid-body rotation and the spatial oscillations in the endwall layer are 
more pronounced. 
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FIGURE 12. Same as in figure 3, but for H I R  = 8.0 and nz = 1201. 
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7. Conclusions 
The circular waves observed by Savag (1983, 1985) on the endwall boundary layers 

in a cylinder with the fluid initially in solid-body rotation, following an impulsive 
stop, are an instability of the endwall layers. The form of these waves is dependent 
on the local structure of the boundary layer, and does not depend on the nature 
of the flow at the edge of the disk endwalls. Since the structure of the endwall 
boundary layers immediately following the impulsive stopping of the cylinder is of 
Bodewadt type, these waves are seen to provide a breakdown of the self-similar 
structure of the boundary layers. The long-time development of the waves cannot be 
followed in the spin-down flows as corner vortices formed at the edge of the endwall, 
and Taylor-Gortler vorticies as a result of the centrifugal instability of the sidewall 
layer, are ingested into the endwall layer early in the flow evolution. A modified 
flow where only the endwalls are impulsively stopped has essentially the same initial 
endwall boundary layer structure. In this flow, the evolution of the waves can be 
followed for long times. However, owing to the interaction between the primary 
and secondary flow, the vortex lines are swept out to larger radii, so there can be 
no solid-body rotation in the interior and there is less sharp bending of the vortex 
lines in the endwall boundary layer, resulting in a restabilization of the layer and the 
disappearance of the circular waves. Computations up to Re = 2 x lo4 have been 
performed and the circular waves in all cases eventually disappeared. On the bases 
of the computations presented here, it is concluded that the Bodewadt layer in the 
modified flow is unstable, but the shear across the Bodewadt layer attenuates as the 
interior flow adjusts to the secondary meridional flow, leading to a restabilization of 
the layer. The results suggest however, that for large H / R  and large Re the interior 
will remain closer to solid-body rotation and in that case the circular waves will 
persist for a longer period of time. They must eventually die out in the classic spin- 
down problem as the flow evolves to rest, but perhaps they will persist indefinitely in 
the modified flow with the rotating sidewall. 

The authors wish to thank John Hart and Scott Kittleman for use of their rotating 
tank facility which was used to make preliminary visualizations of these spin-down 
flows prior to the measurements reported in this paper. The work was partly supported 
by NSF grant DMS-9512483. 
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